If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+176x=0
a = 16; b = 176; c = 0;
Δ = b2-4ac
Δ = 1762-4·16·0
Δ = 30976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30976}=176$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(176)-176}{2*16}=\frac{-352}{32} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(176)+176}{2*16}=\frac{0}{32} =0 $
| k=20+1/2 | | 4+2k=45 | | x^2+20x−7=0 | | 5c-2=-30 | | x2+20x−7=0 | | y+4/7= | | 6,5x=32,5 | | 4+z/2=16 | | 5(d-7)+21=-29 | | x+1/3=-2/3 | | 2x+4/5=1/6 | | 5-+4=3x-20 | | 159.25=2.70(x-8.70 | | 3^2x=5^4x+2 | | 3p-7=4 | | 3.125=5/8(b-4 | | 4t^2–43t–11=0 | | -7x^2+4=-3 | | 7-(1-2x)=3(x-1) | | -15x^2=-45 | | 150=8x+22 | | 825=11(g-20) | | -n/7=-4 | | 825=20(g-11 | | 15w2–22w=0 | | 15w^2–22w=0 | | 77=11n | | 3/4=m+14 | | 4w^2+25w+6=0 | | 2.7(9.1r-4.2)=12.6 | | x+5x=x-35 | | 2952=36(p+40) |